

OILDRILLING ADDITIVES

- / Polyanionic Cellulose
- / Sodium Carboxymethyl Cellulose / Carboxymethyl Starch
- / Hydroxyethyl Cellulose

SIDLEYCHEM®

Linyi City, China +86 5397576660 sales@sidleychem.com

sidleychem.com

Company Profile

SIDLEYCHEM was established in 2005. The company focuses on the production of cellulose ether and starch ether products, which are widely used in the field of petroleum drilling. SIDLEYCHEM has an advanced analysis laboratory to ensure the stability of product quality. The product fully complies with API-13A standards.

SIDLEYCHEM is a high-quality supplier of international oil drilling companies. Our products are highly praised by customers and are widely used in international oil fields such as Saudi Arabia, Iraq, Egypt, and Russia, etc.. In order to develop the European market, SIDLEYCHEM has completed REACH registration in 2020.

Polyanionic Cellulose

Overview

Polyanionic Cellulose can be used in drilling fluid, fixing fluid and fracturing fluid. In drilling fluid, it works as viscosifier, filtration reducer, and rheology controller; in fixing fluid, it is used to control fluid viscosity, suspend heavy objects, and avoid fluid loss; in fracturing fluid, it is used to carry stuffing and avoid fluid loss. It meets API international standard.

Specification

Technical Specifications of PAC											
Item Type	PAC-SH*LV	PAC-SLV	PAC-MLV	PAC-LV	PAC-HLV	PAC-GLV (Granular)	PAC-SHV	PAC-MHV	PAC-HV	PAC-HHV	PAC-GHV (Granular)
Purity(%)	≥ 65.0	≥ 65.0	≥ 85.0	≥ 95.0	≥ 98.0	≥ 95.0	≥ 75.0	≥ 85.0	≥ 95.0	≥ 98.0	≥ 95.0
Apparent Viscosity (mPa • s)	≤ 40	≤ 40	≤ 40	≤ 40	≤ 40	≤ 40	≥ 35	≥ 50	≥ 50	≥ 50	≥ 50
Fluid Loss (FL),(mL)	≤ 12	≤ 16	≤ 16	≤ 16	≤ 16	≤ 16	≤ 23	≤ 23	≤ 23	≤ 23	≤ 23
Loss on Drying(%)	≤ 10.0 ≤ 12.0 ≤ 10.0						≤ 12.0				
Degree of Substitution		≥ 0.90									
pH Value(1%)	6.5 - 9.0										
Remarks	SH* is High-temperature resistant product Conforms to API Spec. 13A standard										

High-Performance Polyanionic Cellulose					
Type	Purity(%)	Brookfield LVT/25°C Viscosity(mPa • s)	Properties		
PL-30000 Extremely high Viscosity	98	Min2500	*A fluid loss agent with a very high yield *An excellent 1, Viscosifier *With shale inhibiting properties		
PL-100 Low Viscosity	98	80 - 160	*A fluid loss agent with a good yield and also extremely good rheological properties for low filtration values		
PL-30 Ultra Low Viscosity	98	20 - 60	*A fluid loss agent for extremely low filtration values *No disturbing increase in viscosity		

page 01 page 02

Sodium Carboxymethyl Cellulose

Overview

Sodium Carboxymethyl Cellulose is a high quality water soluble cellulose derivative. It has good thermal-stability and high salt resistance. It is soluble in water to form thick liquid, and widely used in water-base drilling fluid so as to enhance the drilling fluid viscosity and control the fluid loss.

Specification

Technical Specifications of CMC-HVCMC-LV						
Specification \ Type	Specification \ Type CMC-HV					
	In distilled water	≥ 30				
Viscometer dial reading at 600 r/min.	In 40g / L salt water	≥ 30	≤ 90			
	In saturated salt water	≥ 30				
Fluid Loss (ml)	≤ 10.0		≤ 10.0			
Remarks	Conforms to API Spec. 13A standard					

Carboxymethyl Starch / CMS-R

Overview

Carboxymethyl Starch is an anionic starch ether. it can be hydrated in cold water and is not easy to mildew. It has obvious effect of reducing fluid loss in drilling fluid, and has little effect on the viscosity of drilling fluid. CMS-R has the characteristics of high-temperature resistance and salt resistance, and is suitable for the preparation of various environmentally friendly drilling fluid systems; it has a high acid solubility and is beneficial to protecting hydrocarbon reservoir. The general addition amount is 1-2%.

Specification

Technical Specifications of Carboxymethyl starch CMS-R					
Appearance White or light yellow powder					
Residue greater than 2000 µm	No residue				
Moisture, %	≤ 12				
Viscometer dial reading at 600 r/min.	In 40 g/L salt water	≤ 18			
viscometer dial reading at 600 f/min.	In saturated salt water	≤ 20			
Florid Loss (sel)	In 40 g/L salt water	≤ 10			
Fluid Loss (ml)	In saturated salt water	≤ 10			
Remarks	Conforms to API Spec. 13A standard				

High-Temperature Resistant Carboxymethyl Starch/CMS-H

Overview

By chemically modifying Carboxymethyl Starch, the high-temperature resistance can be increased to over 130°C. Whether it is in fresh water or salt water, the fluid loss reduction performance is excellent, and it is biodegradable, which meets the requirements of marine drilling for environmental protection. The general addition amount is 1-2%.

Specification

Technical Specificat	ions of Carboxymethyl starch CMS-	Н	
Appearance White or light yellow powder			
Residue greater than 2000 µm	No residue		
Moisture, %	≤ 12		
Viscometer dial reading at 600r/min.	In 40g/L salt water	≤ 10	
Aging testing for 16 hours at 130°C	In saturated salt water	≤ 12	
Fluid Loss (ml)	In 40g/L salt water	≤ 15	
Aging testing for 16 hours at 130°C	In saturated salt water	≤ 20	
Remarks	Conforms to API Spec. 13A standard		

page 03

Hydroxyethyl Cellulose

Overview

Hydroxyethyl Cellulose is an non-ionic water-soluble polymer, it is white to slightly yellow, odorless and tasteless powdered solid. It is mainly used as viscosifier and fluid loss agent in oildrilling.

Specification

Typt	Viscosity mpa.s	Moisture, % ≤	Ash, % ≤	
O300	150-400 (2%)			6.0 - 8.5
O100000	4500 ~ 6000 (1%)	6.0	6.0	

Remarks: Brookfield Viscometer at 25°C, LVTD.

Liquid Hydroxyethy Cellulose

Overview

Liquid HEC is made by mixing HEC, mineral oil and surfactant. It can be rapidly disperse in and thicken a variety of brines, including sea water and other light brines, with minimum shear and without forming fisheye.

Specification

Liquid Hydroxyethy Cellulose					
Item	Specification				
Appearance	Cream to light yellow liquid				
HEC content max (%)	40				
PH	6.0 - 8.0				
Solubility	Soluble in fresh&salt water				
Acid solubility	Soluble in 15% HCL				
Temperature stability	93 − 110°C				
Specific gravity	0.93-0.98				

Fluid Loss Agent /CP-8

Overview

CP-8 is a white powdery solid formed by the reaction of acrylic acid and acrylamide. It is suitable for various drilling fluid systems, has good compatibility, can significantly reduce the fluid loss of drilling fluid, and excellent temperature resistance and salt/calcium resistance; it has low dosage (0.2-0.3%); and no pollution to the environment. CP-8 is not also applicable for polymer mud, and all types of water-based drilling fluid system. The highest operation temperature of CP-8 in drilling fluid could be 150°C.

Specification

	Specification				
	White powder				
	Water content, %				
	Screen residue,(Ф0.45mm mesh)%				
	Water soluble		Water soluble		
	Ph (1% water)		≤ 10.0		
		Apparent viscosity, mPa.s	6.0 - 8.0		
	Base mud	Plastic Viscosity, mPa.s	3.0 - 5.0		
Distilled Water	API Filtrate volume, ml		22 - 28		
Distilled Water		Apparent viscosity, mPa.s	≥ 10.0		
	Base mud+0.4% sample	Plastic Viscosity, mPa.s	≥ 5.0		
		API Filtrate volume, ml	≤ 12.0		
		Apparent viscosity, mPa.s	4.0 - 6.0		
	Salt base mud	Plastic Viscosity, mPa.s	2.0 - 4.0		
0.1.0		API Filtrate volume, ml	52 - 58		
Salt Base Mud		Apparent viscosity, mPa.s	≥ 5.0		
	Base mud+2.0% sample, 150°C Hot rolling 16h	Plastic Viscosity, mPa.s	≥ 2.0		
		API Filtrate volume, ml	≤ 12.0		

page 05 page 06